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The U.S. Department of Agriculture has used response-surface
techniques as applied by Baker and Bargmann (1981) to plant
process simulation models as an aid in the identification of
interrelationships among yield and various single-valued and
functional parameters. Orthogonal cubic surfaces have provided
insight into higher order relationships as well as a measure of
the relative sensitivity of yield to experimentally determined
parameter values. Several examples investigate the effective-
ness of those higher order surfaces and illustrate how less pre-
cise (and less costly) measurements may be possible in building
and using these simulation models.

KEY WORDS: Response surfaces; Experimental design; Sta-
tistical computation.

1. INTRODUCTION

The application of response-surface techniques to plant pro-
cess simulation (PPS) models was initiated by the U.S. De-
partment of Agriculture (USDA) as an analytic tool by which
agronomists, agricultural engineers. and other plant scientists
could identify more clearly the structure of their plant process
models and the effectiveness of those models in mimicking the
actual growth of a specific kind of plant or plants. In addition,
the sensitivities of various responses could be identified with
respect to model inputs. parameters, and substructures.

Plant modelers have had two basic objectives-to study the
individual plant processes and their adaptation to various stresses
and to predict biological yield. Parameter values for the dif-
ferential equations and for the functional expressions are de-
termined either by experimentally derived regression equations
or by calibration. In most cases, the plant is grown on a daily
time step, where the biomass is generated as a function of heat
units or calendar days. The plant may be stressed as it reacts
to initial and daily input of environmental variables, such as
maximum and minimum temperatures, solar radiation. and pre-
cipitation. Various models permit application of fertilizers, pes-
ticides, and herbicides and irrigation treatments.

The USDA Statistical Reporting Service currently uses
regression models to estimate final gross yield and to make
early and midseason forecasts of final yield. One potential ap-
plication of PPS models is forecasting on the basis of early-
season weather conditions. observed plant-part information. and
simulated future weather. PPS models are validated by using
the techniques and criteria in Wilson et al. (1980).

In our study of the structure of a PPS model (after validation),
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we have been concerned about the degree of interrelationships
between model variables and parameters and about the sensi-
tivity of yield to various factors. In a previous paper (Baker
and Bargmann 1981), we discussed our first application of
response-surface techniques to PPS models. Many of the re-
sultant surfaces were not quadratic. but linear with large errors.
Cubic effects were studied to determine whether such fine struc-
ture is required to exhibit the relationships. With the derivation
and application of a scaled orthogonal central composite design,
we are able to detect higher order relationships (in the model)
and the sensitivity of the yield response to these relationships
(as represented in the given model).

Let us first consider the derivation of an orthogonal cubic
central composite design. Then we shall apply this orthogonal
cubic design to a PPS model and discuss the resulting equations.
The information from these equations will be contrasted with
the information from the corresponding quadratic designs.

2. BACKGROUND

Most of the early research with response surfaces (e.g .. Box
1954, Box and Hunter 1957, Draper 1960, and Gardiner et al.
1959) was concerned with the classes of second- and third-
order designs that are rotatable. Box and Hunter (1957) ad-
dressed the topic of orthogonality for second-order designs only;
they referred to the bias introduced if higher order terms are
nonnegligible. There are many more such terms in a cubic
model than in linear or quadratic models.

Gardiner et al. (1959) derived rotatable third-order designs
without consideration of orthogonality. The use of central com-
posite designs permits sequential methods for progressing to
higher order surfaces. Derringer (1969), for example, dis-
cussed this procedure for up to third-order designs. Later au-
thors have investigated other criteria for response-surface de-
signs, including minimum bias estimation (e.g., Thompson 1973),
D and G efficiency (e.g .. Lucas 1976), and minimum point
designs (e.g., M. J. Box and Draper 1974). G. E. P. Box and
Draper ( 1982) suggested that power transformations can be used
both to ascertain the degree of the response surface necessary
for a good fit of the data and (with the transformed variables)
to reduce the design to a lower degree. In their discussion they
derived relationships in a cubic response-surface model. Mont-
gomery and Bettencourt (1977) discussed the use of response-
surface methodology for computer simulations in the context
of system optimization for multiple responses. Smith and Mauro
(1982) described strategies available for the analysis of large
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Table 1. Parameters and Definitions

3. THIRD-ORDER CENTRAL COMPOSITE DESIGNS
WITH ALL EFFECTS ORTHOGONAL

numbers of variables when factor screening procedures are em-
ployed.

As in the familiar second-order central composite design, the
levels at which the "star points" are to be chosen ( + a and - a
for one factor with all other factors held constant at the central
level) are completely determined if the design is to be orthog-
onal. A design variation is available if the center point is re-
peated r times (it should be noted, however, that the center
point is one of the lattice points in the Y design, so an additional
r - 1 readings should be made at this point if a different a is
desired). For the present application the center point is given
the weight r, since in most cases, for current PPS models, the
response will be deterministic when the input levels are set. In
the following set of formulas, each factor has been standardized
so that the elements of the X' X matrix will be I in the diagonal
(except, of course, the constant term, which is estimated by
the grand mean). Table I contains parameters and definitions
for the design, and Table 2 contains the resulting values.

Table 3 presents the definition of standardized orthogonal
linear, quadratic, and so forth, effects using the parameters
defined in Table 1. With these definitions, all diagonal elements
of X'X (except the first) are I.

The estimates of the coefficients for the standardized or-
thogonal effects are obtained from the responses at the Y lattice
points, the center point(s), and the 2k star points. The Y lattice
points are subjected to the extended Yates algorithm for Y
factorial designs with the following modification: In the third
cycle, where the Yates algorithm requires (High + Low - 2
. Middle) for each triple, the special application for this design
uses just (High + Low). Thus after recording the responses to
the lattice points in extended Yates order ( - I, - I, - I; 0,

Table 2. Minimal Values for n and Associated Values for a, y, and .5

k n a j' (j

2 13 .7782 .5547 .9338
3 33 .9746 .6030 .9952
4 89 1.1410 .6360 1.0139
5 253 1.2845 ,6534 1,0130
6 741 1.4113 .6612 1.0081

+ Am . X (cubic)

+ An . XY (linear-linear)

+ Au . X (quadratic) + A,v . Y (quadratic)

z G /n + Ax . X (linear) + Av . Y (linear)

+ Ayn . Y (cubic) + A"y . XY (linear-quadratic)

+ Avxx . YX (linear-quadratic),

where the coefficients (e.g., Ax) are evaluated as in Table 4
and the orthogonal polynomials are defined as in Table 3.

The significance of each effect can be assessed by dividing
each of these coefficients by the square root of the mean squared
error (MSE) and comparing the result with t tables. Effects of
degree 4 and higher and any replications are regarded as residual
terms.

As in the case of a second-order design, replication of the
center point permits other choices of the value a of the star

- 1, - 1; 1, - 1, - 1; I, 0, - I; 0, 0, - 1; ... ; 1, 1, I) and
dividing them into triples, the first Y -I entries of the next
column are the sums of each triple (cycle I: High + Middle
+ Low), the second 3*- 1 entries are the differences of last
minus first in each triple (cycle 2: High - Low), and the third
3k-t entries are the modified sums (cycle 3: High + Low,
instead of the usual High - 2· Middle + Low). This procedure
is performed k times. In Table 4, E(a) denote~ the entry in the
final (k + 1st) column in the row corresponding to level (0,
- 1, - 1, ... ) of this extended Yates tableau, E(aq) is the
entry in row (1, -I, -I, ...),E(ab) is in row (0, 0, -I,
-I, ... ),E(abq) is in row (0, I, -I, -I, ... ),andE(abc)
is in row (0, 0, 0, - I, ... ) of the final column of the extended
Yates tableau. X + and X_denote the responses for the star
points, with factor X, at +a and -a, respectively. G is the
grand total.

For k = 2, the resulting response equation can be expressed
as

NOTE: For seven or more factors, fractional factorials are available (e.g., see John 1971, p.
143) that leave all terms up to and including cubics unaliased wrth other terms of degree three
or less.

Definition

The correction for cubic terms

Number of factors
Number of replications at the center

point (0, 0, ... )
The 3' points of the complete 3'

design
Number of observations
The squares of the nonzero factor

levels at the star points (dependent
on k and r)

The correction for quadratic terms

Parameter

Lattice points

k
r

n = 3' + 2*k + (r - 1)
a2 = (n*3'-2)"2 _ 3' ,

y = 2*(3'-2/n)'·2
= 2*(a2 + 3'-')/n

.5 = (3'-1 + a4)/(3'-' + a2)

Table 3. Definitions of Standardized Orthogonal Effects for k Factors

Effect Standardized Orthogonal Effect

X (linear)
X (quadratic)
X (cubic)
XY (linear-linear)
XY (linear-quadratic)
XYZ (linear-linear-linear)

(ny)-12. x
{2(a4 + 3'-2W, 2. (x2 - y)
(2a' 11 - a21) , . (ni'/3'-')' 2. (x2 - (j) . X
(4·3'-2)-12·xy
(4· 3k-3)-' 2. X • {(y2 - y) - 2· (x2 - .5)/[3' (1 - a2)]}
(8 ' 3' -3) '2. xyz (k 2: 3)
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Table 4. Estimates of Coefficients of Orthogonal Effects for k Factors

Effect Coefficient

X (linear)
X (quadratic)
X (cubic)'
XY (linear-linear)
XY (linear-quadratic)
XYZ (linear-linear-linear)

(n;') , , . [E(a) + II(X - X )]
{2(1I' ~ 3' ')} '2. {E(aq) + II'(X t X) - ;"G}
(3"'n;') 12. (uE(a) 3' '(X. X)) . sgn(l - (12)

(4· 3") ". E(ab)
(4· 3'3) ". {E(abq) - (2/3) .E(a)}
(8 . 3' J) '? E(abc) (k '" 3)

• sgn(x) ~ 1, If x 0: O. If x ~ 0: -'. If x O.

4. APPLICATIONS OF CUBIC DESIGNS

4.1 A Florida Soybean Model

Table 5. Yates Order Seed Weight Responses for SOYGRO Example:
Florida Soybean Model, 1980 Weather, 10% Deviation

II' = .9498
II = .9746

N = 33

Table 6. Orthogonal Cubic Parameters and
Expressions for SOYGRO Example

;- = .6030
Ii = .9952
X-LINEAR = .224 * X

X-QUADRATIC = .3580 * (X2 - .6030)
X-CUBIC = 15.21 * X * (X2 - .9952)
XV-L1NEAR.L1NEAR = .2887 * X * Y
XVZ-L1N.L1N.L1N = .3536 * X * V * Z

XV-L1N.QUAD = .5000 * (X * (V2 - .6030)
- 13.29 * X * (X' - .9952))

When three factors are used in a deterministic central com-
posite design, 33 data points are required. including 6 star points
at a distance of .9746 from the design center. The + I and - 1
levels of the three factors represent a JO% fluctuation in the
daily values with the observed weather values as the center
point settings. The point ( - I, 0, I), for example, represents
days when the maximum temperature was reduced by 10% each
day, the minimum daily temperature remained the same. and
the solar radiation increased by 10% for each day. In the north-
ern panhandle of Florida. for some design points, if minimum
daily temperature is increased by IOo/c, say, it will be larger
than the maximum daily temperature when it is decreased by
JOcYc: the minimum and maximum temperatures are both set to
the average of the two calculated temperatures in these cases.
Seed weight in g/mc (SEEDWT) is the recorded response.

Actual 1980 weather data from Gainesville were entered as
input to drive the simulation of the growth process of Bragg
soybeans. The simulated seed weights arc listed in Table 5 in
Yates order for the lattice. followed by seed weights at the star
points A., A~. B., B~. C ,and C.: the values for rl, ;', and
() and the definitions of the orthogonal expressions are given
in Table 6. The coefficients of the orthogonal effects and the
statistical significance of their contributions appear in Table 7.

The orthogonal cubic response surface for seed weight shows
that the effect of solar radiation (C) is very strong. with a linear
coefficient of more than 1Mi of the calibrated model response;
this large contribution is masked in the quadratic response-
surface equation (5%). When the orthogonal factors' contri-
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428
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point, while retaining the complete orthogonality property. The
estimation procedure will then place additional weight on the
center point observations. Because of this weighting of a central
observation, we suggest keeping the choice of 11 within modest
bounds of its minimal value. From the equation relating 11 and
n in Table I. we obtain

Thus if k = 3 and 11 = 1.141. then n = 35.4: for exact
orthogonality, II = 35 (i.e .. two extra replications of the center
point) would require an rl of I. 117.

For the purpose of illustrating the procedure. a numerical
example has been included in the Appendix. (The computer
program ORTCUB and instructions for its use can be obtained
from the authors.)

The first example is presented to illustrate the procedure and
interpretation of orthogonal cubic response surfaces when ap-
plied to PPS models. The second example illustrates the actual
use of the procedure to decide, for a given PPS model. whether
a cubic response surface is required or whether the much cheaper
quadratic response surface would be adequate to explain the
interaction of input variables or parameters and their effect on
predicted yield.

Scientists at the University of Florida (Gainesville) are con-
structing several versions of a soybean PPS model. For a given
location, variety, and soil, these models "grow" a soybean
plant on a daily basis, using known physiological relationships,
experimentally derived relationships. and observed daily weather
data. The farm operator can enter different combinations of
management practices and pest regimes.

For our sensitivity analysis with cubic response surfaces, we
used the research version of the model SOYGRO (Wilkerson
et al. 1981). Weather inputs of maximum daily temperature
(A), minimum daily temperature (8), and solar radiation (C)
were the factors.

411
431
443
436
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• With a ~ 1.25. the center point carries a weight of 2.85 to ensure complete orthogonality.

NOTE: 55 regression. 3.120.15; SSE. 41.92; R2•. 987; M5 regression. 346.68; MSE. 8.38;
Root M5E. 2.90; OF regression. 9; OF error. 5.

Table 9. 1979 Temple Wheat Data-Response-Surface Equations
With a = 1.25

Table 8. SAS Output PROC GLM for Quadratic Response Surface:
1980 Gainesville Weather, 10% Deviation

T for Ho, S Er of
Parameter Estimate Parameter = 0 Pr> ITI Estimate

Intercept 435.678 285.75 .0001 1.525
A - 2.661 -2.89 .0341 .920
B - 3.203 -3.48 .0176 .920
C 16.290 17.66 .0001 .920
A*B - 4.367 -4.27 .0080 1.024
A*C .341 .33 .7526 1.024
B*C .137 .13 .8988 1.024
A*A -4.320 -2.29 .0703 1.884
B*B -.807 -.43 .6862 1.884
C*C - 3.542 -1.88 .1188 1.884

Orthogonal Cubic'

5.1557
9.5880
1.6760

- .4344
7.7960
-.6683
1.5230
.2663
.2175
.1637
.1120
.0635

-.0618
- .1871

.2463

.1480
-.0993

Coefficient

Cubic

5.213
1.150
.227
.070

1.031
-.140

.254

.044

.046

.027

.019

.011
-.010
-.147

.071

.043
-.029

5.206
1.288
.221

-.059
1.030
- .121

.259

.044
ns
ns
ns
ns
ns

Quadratic

Intercept
A
B
C
D
A(2)
AD
BD
C(2)
AS
AC
BC
CD
C(3)
C(2) A
A(2)C
A(2) D

maximum relative error in prediction of the observed value
from the quadratic response surface was less than 2.75%, and
with only one exception, the bias of prediction from the qua-
dratic design is in the same direction as the bias from the cubic
equation. Despite the significance of some of the cubic effects
in the response equation, the quadratic model seems to describe
quite adequately the behavior of the plant growth simulation
model for this environmental scenario.

This last illustration describes the actual situation for which
the orthogonal cubic procedure was designed. We found that
for these weather conditions, and for the prediction of yield
(rather than other responses, such as number of heads), the
quadratic response equation was sufficient.

It should be noted that if the number of control variables to
be studied simultaneously is three or fewer, then the extra effort
to obtain simulation runs for a cubic design is so small that the
refined model should be employed. It is for the very complex
PPS models and for widely differing weather conditions that
studies of this kind should be made, for then the additional runs
that are required may be both expensive and unnecessary.

Term

Table 7. Output From ORTCUe (A, e, C, Response = SEEDWT):
1980 Gainesville Weather, 10% Deviation

Orthogonal Resp. Eq. T for Ho,
Effect Coefficients Coefficients Parameter = 0 Pr> ITI

Mean 430.594 435.986
A -14.202 - 2.159 -14.47 .1415E-08
A(2) -13.981 - 5.005 -14.74 .1716E-08
A(3) 1.735 - 2.340 1.829 .0905

B -18.710 - 3.665 -19.72 .4530E-10
A B - 15.820 - 4.567 - 16.68 .3713E-09
A(2) B 7.578 3.789 7.988 .2273E-05
B(2) -1.686 -.603 -1.777 .0990
B(2) A 4.403 2.202 4.642 .4615E-03
B(3) 3.796 -3.315 4.001 .1508E-02

C 72.700 22.361 76.63 .1186E-17
A C .436 .126 .459 .6535

A(2) C -.672 -.336 .708 .4912
B C .670 .199 .707 .4923
A B C .574 .203 .604 .5559

B(2) C -.208 -.104 .219 .8299
C(2) -9.312 -3.333 -9.816 .2230E-06
C(2) A -.081 -.040 -.085 .9325
C(2) B 1.608 .804 1.695 .1139
C(3) -.768 - 5.827 -.809 .4330

NOTE: SS regression. 6471.28; SSE. 11.70; R2•. 998; MS regression. 340.59; M5E .. 900; Root
MSE •. 949; OF regression. 19; OF error. 13.

4.2 A Texas Wheat Model

The Maas and Arkin (1980) wheat model TAMW was chosen
to investigate the need for further refinement of response-sur-
face models. Four factors were chosen with a = 1.25 to de-
scribe this PPS model for winter wheat grown in Temple, Texas,
in 1978-1979. Results were obtained for one response-yield-
for 89 points in the cubic central composite design with four
factors. The 25 points used to determine the quadratic response
surface are a subset of these 89 points.

Table 9 presents the coefficients of the response equation
that, in the cubic surface, are significant at the .05 level. The

butions to seed weight are ordered, nine terms are significant
(at the .05 level), with B(3) the last significant term. The
quadratic-linear interactions between A and B are also signif-
icant.

In comparison, the quadratic surface (Table 8) has five sig-
nificant terms and is basically linear, with A-B interaction. C
has a linear coefficient that is less than 4% of the predicted
center point response. The quadratic effects of A and C are not
significant in this response surface.

The presence of higher order terms and interactions provide
a clearer picture of the sensitivity of seed weight to the weather
factors in the model. It may yet be difficult to interpret these
interaction terms physically, but the behavior of the response
is more precisely defined.

The prediction errors for both the quadratic and cubic models
are very small and have not been presented; there is little vari-
ation in the seed weight for this particular combination of
environmental data, and both models have a good fit. The cubic
model has provided us with a more revealing description of the
relationship between seed weight and the environmental vari-
ables.
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APPENDIX: NUMERICAL EXAMPLE
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Let T be the observed treatment value for each of the combinations
of three factors in a cubic design. Examples of calculating estimates
(G = grand total):

(4 * 3) ,: * (-60) = -17.32

(4) "* (380 - 2 * 546/3) = 8

8 "* ( - 40) = - 14.14.

+ a * (214.6 - 166.4»

132.9

(2 * (a' + 3» "* (3.252 + a'

* (166.4 + 214.6) - i' * 6,122.4)

- 27.93

(9 * 33 * I') ,-

* (a * 546 - 9 * (214.6 - 166.4»

7.34

q)

I)

A cubic

AB(I - Ii

A quadratic

AB'(1

ABC(I - I

If the coefficient of the orthogonal quadratic effect in A is multiplied
by .3580, the value - 10 (response equation coefficient of x') is
obtained. In the samc manner. multiplication of the estimates by the
expressions in Table 3 produces the coefficients of x, x' - I"~ and so
forth.

Table A.2 contains both the orthogonal coefficients and the final
response equation coefficients for these data.

G = 6.122.4

Mean = G/33 = 185.5.

The extended Yates table Crable A. I) is different, in thc last cycle.
from the standard three-level Yates table: note that the first number
in the last block of the A column is just 71 + 151 (instead of 71 +
151 - 2 x 132, as in the lattice design without star points).

By Table 4,

578

Table A. 1. Extended Yates Table

Effect T A e C

1 71 354 1,326 4,968
a 132 448 1,698 546
aO 151 524 1,944 3,252

- --
b 108 441 232 672
ab 160 580 166 -60
aOb 180 677 148 468

- - -
bO 131 504 852 3,270
abo 182 670 1,112 380
aobo 211 770 1,288 2,140

c 108 80 170 618
ac 157 72 236 -84
aOc 176 80 266 436

- - -
bc 165 68 0 96
abc 200 50 -20 -40
aObc 215 48 -40 64

- - --
bOc 200 72 120 396
aboc 229 44 164 -56
aOboc 248 32 184 280

CO 129 222 878 3,270
acO 174 288 1,118 380
aOcO 201 342 1,274 2,140

- - --
bco 200 284 160 436
abcO 226 380 116 -40
aqbcQ 244 448 104 304

- - -
bOcQ 241 330 564 2,152
ab"c" 256 444 732 264
aqbqcq 273 514 844 1,408

A 166.4
A. 214.6
e 158.6
e, 228.1
C 161.6
C. 225.1

NOTE Underscores indicate sets of three numbers used in calculation.

!Recei"ed August 19R3. Re"ised Decemher 1984.]

Table A.2. Printout of Computer Program ORTCUe for the Orthogonal
Cubic Response Design Numerical Example: Coefficients of Orthog-

onals and of the Response Equation for Standardized Levels

Orthogonal Coefficients' Resp. Eq. Coefficients'
Coefficients for % Coefficients for %

Mean 185.5 92.764 200.0 100.
A 132.9 66.468 20.00 10.0

A(2) - 27.93 - 13.968 -10.00 -5.00
A(3) 7.32 3.6599 5.000 2.50

8 165.8 82.922 30.00 15.0
A 8 - 17.32 -·8.6603 - 5.000 -2.50

A(2) 8 10.00 5.0000 5.000 2.50
8(2) -19.56 - 9.7778 - 7.000 -3.50
8(2) A 8.000 4.0000 4.000 2.00
8(3) 2.14 1.0710 6.000 3.00

C 152.4 76.210 25.00 12.5
A C - 24.25 -12.124 -7.000 -3.50

A(2) C 12.00 6.0000 6.000 3.00
8 C 27.71 13.856 8.000 4.00
A 8 C -14.14 - 7.0711 - 5.000 -2.50

B(2) C - 8.000 - 4.0000 - 4.000 -2.00
C(2) -19.56 - 9.7778 -7.000 -3.50
C(2) A 8.000 4.0000 4.000 2.00
C(2) B - 6.000 - 3.0000 - 3.000 -1.50
C(3) 2.273 1.1367 8.000 4.00

• Responses are expressed as a percentage of the response at the center point.
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